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FOREWORD

In this paper computational procedures that solve three general

mathematical problems concerning optimal flows through networks are

described. The presentation is directed toward readers interested in

complete mathematical validation of these algorithms or in the

mathematical details of their implementation.

The requirement for incorporation of such procedures arose in the

context of RAC Study 24.1, and the work reported here represents one

aspect of that study. The objective of the study is to design a computer-

assisted planning procedure for determining US Army midrange require-

ments for technical-service troops and class IV materiel for specific

campaigns. One of the tasks involved in the planning process is the

detailed routing of supplies through highway and railroad networks. The

material presented here provides a mathematical basis for efficiently

selecting desirable routings through such networks.

The first of the three procedures determines minimum-cost flows

between specified network nodes when a maximum flow rate or "capacity"

is given for each link, and when the cost of flow in a link is proportional

to the magnitude of flow. The second determines minimum-cost flows
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when minimum as well as maximum flow rates are stipulated for all

links. The third determines whether or not a given flow pattern minimizes

cost. In the event it does not, the procedure then transforms the given

flow pattern into one that is optimal.

A computer program employing the first two of these procedures has

been written for the IBM 7090 computer and constitutes one operational

package in the new planning system. Readers interested in the appli-

cations of these results in the specific context of Study 24.1 are referred

to ORO-T-393, "Computer-Assisted Strategic Logistic Planning: Trans-

portation Phase"; ORO-SP-160, "Programming Computer-Assisted

Transportation Planning"; and ORO-TP-45, "Computer-Assisted Prepa-

ration of Transportation Annex, Planner Manual. " Further discussion,

including documentation and use of the computer program, will appear in

the final report of Study 24.1.

The material presented here constitutes an adaptation and unified

presentation of various known results in network flow theory, in a form

useful to support the above study.
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THREE GENERAL NETWORK FLOW
PROBLEMS AND THEIR SOLUTIONS



ABSTRACT

Computational procedures for solving three general network flow

problems are presented, together with proofs establishing their validity.

Two of the problems are concerned with the determination of feasible

flows (i.e., flows that lie between prescribed bounds in every arc of the

network) whose costs are minimum, where arc costs are proportional

to the magnitude of arc flow. The third problem involves the determi-

nation of whether or not a given feasible flow has minimum cost. The

utility of the three procedures is illustrated in the context of a general

transportation application. The material presented constitutes an adap-

tation and unified discussion of various known concepts and results in

network flow theory.
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INTRODUCTION

This paper extends the methods described in ORO-TP-15 to a wider

class of network flow problems. In that publication, networks that had a

specified "capacity" as well as a "unit cost" associated with each direc-

tion of every edge or "link" were considered. For convenience, parallel

links were excluded in order that a link might be uniquely identified by its

two vertices. The problem under consideration concerned the determi-

nation of the maximum steady-state rate of flow that could be sustained

between two specified vertices, and the determination of a specific family

of minimum-cost flow patterns between these vertices-one pattern for

every integral rate of flow from zero to the maximum. That problem is

essentially Problem A of this paper. The restriction on parallel links has

been removed here, and the problem and its solution are presented in

terms more closely allied to the related Problems B and C.

The method adopted in ORO-TP-15 was one of discovering a

succession of path flows from the origin to the destination in such a way

that each new path flow contributed one more unit of flow with the least

possible increase in cost. The mechanism for selecting the "best" path

at each stage of the process consisted of associating an economic length
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(called the "effective length") with each direction of every link. This

length was a function of the appropriate constant unit cost and also of the

amount of flow already present in the link owing to paths previously

selected. By defining these lengths properly the best path to use next

was simply the shortest in terms of total economic length.

A vital point in the procedure was the fact that a starting feasible

flow pattern having minimum cost was available. (This was simply the

pattern having zero flow in every link and consequently zero total cost.

An important extension of this problem arises if one wishes to "force"

flow through one or more links. That is, the flow in certain links is

required to be in a specified direction and to be of a magnitude lying

between two positive bounds. In this case there may not be any feasible

flow patterns if the constraints are too stringent. If any feasible flows

between the specified origin and destination exist then there are integers

m and M that represent the minimum and maximum feasible rates of flow

between these points. One can again pose the problem of determining a

family of minimum-cost flows, one for each integral rate of flow between

m and M. This is Problem B of the present paper. One can deal readily

with problems of this type by employing an appropriate modification of

the network, whose effect is to remove the constraints that "force" flow,

and hence to reduce the problem to one of the previous type. The pro-

cedure adopted here involves a network augmentation that differs slightly
2

from that of Berge, together with the necessary extension of ideas

required to find a complete set of minimum-cost flows rather than simply

one.
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The basic combining properties of elementary flows (corresponding

to paths and cycles), which play an important role in the solution of

Problem A (and, indirectly, Problem B), also yield a criterion for

testing the optimality, in terms of cost, of a given feasible flow pattern.

Problem C of this paper concerns such a test. A systematic method for

testing, and for reducing the cost of nonoptimal patterns, is incorporated

in the resulting procedure.

Network flow problems have been the object of considerable attention

in the literature. The list of references given at the end of this paper is

minimal. Concepts and results from these particular references were
2 3

used to form the basis for the present exposition. Berge, Fulkerson,

Ford and Fulkerson, 4 and Iri 5 give procedures for finding minimum-cost

feasible flow patterns. Of these Ford and Fulkerson and Iri find complete

families of minimum-cost patterns transmitting increasing amounts of

flow from origin to destination. The principle of developing " expanding'

flow patterns by successive addition of flows along appropriate "unsaturated"
67

paths is discussed by Dantzig and Fulkerson. Pollack and Wiebenson7

review a variety of algorithms for finding shortest routes through net-

works. The particular shortest-route algorithm employed here (as the

repeated " inner loop" in the procedure for solving Problem A) is a

"labeling" process patterned after those presented by Ford8 and Ford

and Fulkerson. 9 The cited publication by Jewell 1 0 includes a development

of ideas similar to that adopted here, particularly for the solution of

Problem A. Since a comprehensive canvass of the literature of flow
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theory was not undertaken, other related material besides that referenced

here has appeared in the literature.

The next section of this paper presents both fundamental terminology

and results required for the precise formulation and solution of the three

flow problems considered. The following section states the three prob-

lems. A basic vocabulary having been established, the next section

indicates how all three mathematical problems arise in the contest of a

general transportation problem. (The reader who does not wish to have

the continuity of the mathematical development broken may omit this

section without loss of any essential mathematical facts. ) The remaining

three sections develop and justify the procedures for solving the three

problems. A glossary of recurring symbols and an index of principal

terms are included at the end.
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GENERAL DEFINITIONS AND RESULTS

Let X and U denote two sets, whose elements will be referred to as

vertices and arcs respectively. Assume that two distinct vertices x E X

and yE X are associated with each arc uE U, and are designated as the

initial and terminal vertex of u, respectively. This relationship is

expressed symbolically by writing u (x,y). This is read "arc u

extends from vertex x to vertex y, " because of the geometric interpretation

described below.

The pair (X, U) together with the association of vertices with arcs is

a directed graph. If X and U are both finite sets the graph is called a

finite directed graph. A finite directed graph can always be represented

geometrically in three-dimensional Euclidean space by a set of points

corresponding to the vertices and a set of simple open curves* repre-

senting the arcs. Each curve is constructed so that its end-points are

the points in space corresponding to the two vertices associated with the

arc it represents. Moreover the curves can be constructed in such a

*A simple open curve is a point set topologically equivalent to (or
homeomorphic witl a straight-line segment; i.e., it can be transformed
into a segment by a suitable one-to-one transformation continuous in both
directions.
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manner that they are mutually disjoint, except for common end-points

they may share. Finally, each curve is considered to be directed, the

direction being induced by traversing the curve from its initial to its

terminal vertex. (Actually, a much larger class of directed graphs than

merely the class of finite graphs has geometric realizations of the above

type. Any graph for which neither X nor U has a higher order of infinity

than the set of real numbers can be represented. ) Most of the terms and

concepts associated with graphs are particularly transparent when related

to geometric graphs, as structures of the above type are called.

The initial and terminal vertices of an arc are collectively called its

end-points. An arc is said to be incident with its end-points, and non-

incident with all other vertices. A vertex that is not incident with any arc

is an isolated vertex. If u1 and u2 are distinct arcs such that u1  (x, y)

and either u2 t- (x,y) or u2  (y,x) then and u2 are termed parallel

arcs. If u 2  - (x, y) then u1 and u 2 are strictly parallel arcs. Two dis-

tinct arcs are adjacent arcs if they have a common end-point. They are

strictly adjacent arcs if the terminal vertex of one coincides with the

initial vertex of the other. If u1 and u2 are strictly adjacent, and the

terminal vertex of u coincides with the initial vertex of u2 , u1 is said to

precede u2 .

A path is a set of arcs that can be arranged in a sequence

( U1, u 2 , . . ., un) such that ui precedes ui+1 for i = 1, 2, . . ., n - 1

and such that the initial vertex of u1 is distinct from the terminal vertex

of un . More specifically, the above path is called an x-y path if x is the
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initial vertex of u and y is the terminal vertex of un . In a geometric

directed graph an x -y path corresponds to an open curve with end-points

x and y such that if one envisions " traversing" it from x to y, traversing

the arcs in the order, ul, u2 , . . ., u n, then the direction of each arc

agrees with the orientation induced by this traversal. A path is a simple

path if no vertex is incident with more than two arcs of the path. A cycle

is defined in the same manner as a path except that the initial vertex of u1

coincides with the terminal vertex of un. A simple cycle is one such that

no vertex is incident with more than two arcs of the cycle. Figure 1

illustrates these important substructures of a graph.

It will be convenient to consider also sets of arcs that differ from

paths and cycles only in that certain of the arcs have the "wrong" orien-

tation. If (X, U) is a directed graph let U' denote a set of elements that

are in one-to-one correspondence with the arcs of U, and let u' denote

the element of U' corresponding to uEU. The elements of U' will also be

considered as arcs whose end-points are specified by the relation

u' - (y, x) whenever u f (x,y). The symbol W will always denote the

enlarged set U U U'.*

Consider now the directed graph (X, W) obtained by enlarging (X, U)

in the above manner. If a simple x -y path { uI u 2, . . ., Uk) is given

in (X,W), in general some of the arcs will be members of U, and others

of U'. Arcs of the former type are called normal arcs, relative to the

*A U B denotes the union of sets A and B; i.e., the set of elements
appearing in one or both sets.
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path, and arcs of the latter type are called inverted arcs. Similarly,

given a simple cycle in (X, W) the arcs can be classified as normal or

inverted in the same way.

A directed graph (X, U) is said to be connected if for every pair of

distinct vertices x and y there is at least one simple x -y path in the

extended graph (X, W).

In the remainder of this paper consideration will be restricted to

directed graphs of a special type. Specifically, a network is defined as

a finite directed graph that is connected.

Let (X, U) be an arbitrary network. A flow pattern, or simply a

flow in (X, U), is a function f that maps the set of arcs U into the set of

integers. If ueU, the integer f(u) is called the flow in arc u. If u (x,y)

the flow is said to be "from x to y, " or " toward yY and "away from x, 1

if f(u) > 0. It is said to be "from y to x, " or "toward x" and "away from

y, "if f(u) <0.

This terminology is suggested by interpreting (X, U) as a set of

essentially one-dimensional channels (arcs) interconnecting certain

locations (vertices) where some homogeneous substance is flowing

through each arc u at a steady rate f(u) , and where the sign of f(u),

in conjunction with the orientation of u, indicates the direction of flow.

Let U(-'x) denote the set of arcs of U having x as terminal vertex,

and let U(x -) denote the set of arcs of U having x as initial vertex.
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Given a flow pattern f the summation* EU(x .)f(u) denotes the total

magnitude of flow away from x, minus the total magnitude of flow toward

x, contributed by arcs in the set U(x -). Similarly U(-x)f(u) denotes

the total flow toward x, minus total flow away from x, for arcs of U(-x).

The net output at vertex x relative to flow pattern f, denoted by Qf(x), is

defined as follows:

Qf(x) = EU(x )f(u) - EU(.x)f(u)

If either of the sets U(x -- ) or U(-.x) is void the corresponding

summation is taken to have value zero. (It is a consequence of the

connectivity of (X, U) that not both sets can be void. )

One can classify the vertices of (X, U) in terms of the values of

their respective net outputs as follows:

If 2f(X) > 0, x is a source.

If Qf(x) < 0, x is a sink.

If fif(X) = 0, x is an intermediate vertex.

It is readily seen that ZX %(x) = 0 since, when ZXllf(x) is expanded,

the resulting double summation involves f(u) precisely twice for every

arc ucU-once with a positive sign and once with a negative sign. [ Since

uEU(x -. ) for precisely one xeX, and ucU(-y) for precisely one yEX, and

y t x. ] Figure 2a illustrates the above notions.

If lof(x) = 0, except possibly for x = x i and x = x then i2f(x i ) - 2lf(x ).

So either every vertex is an intermediate vertex or else x. and x. are the1 3

*Summations of the form E will be written as simply 2;u when
ambiguity will not arise. uEU
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source and sink, in some order. Assuming that xi is the source, i.e.,

that Olf(xi) > 0, such a pattern is called an x. *xflow pattern. Given an

x. -&x flow pattern f, Off(xi) is called the value of the flow pattern. Intu-

itively, it represents the rate at which flow "moves" from xi to xj. It

will be convenient to include, in the class of x. -x. flow patterns, patterns1 3

f also such that Of(x) = 0 for all xcX, including xi and xj. Such patterns

will be considered as zero-valued x. -x. flow patterns.1 3

If f and g are two flow patterns defined on the same network (X, U),

f and g are said to be conformal if there is no arc uEU such that

f(u) • g(u) < 0. Expressed differently, for every arc uEU, either f(u) > 0

andg(u) >0orelsef(u) <0andg(u) <0. Aset{f1 , f2 ' . ", fk}of

flows is conformal if the flows are pairwise conformal.

The sum of two flow patterns f and g, denoted by f + g, is defined by

the relation (f+ g)(u) = f(u) + g(u) for all UEU. Similarly, the difference

f - g is defined by the relation (f - g)(u) = f(u) - g(u) for all uEU. If f1

and f2 are both xi -x. flow patterns having values k1 and k2 respectively,

it is easily seen that f + f2 is also an xi -x flow pattern whose value is

k1 + k2 . Moreover, f1 - f2 is a flow pattern of value I k1 - k2 1 , and is an

x i -O-x. or xj -x i flow pattern if kI - k2 > 0 or < 0 respectively.

Two particularly simple types of flow patterns, called elementary

flow patterns, play a central role in the following development. It will

be seen that these constitute basic building blocks for more complex flow

patterns in the sense that a given pattern can be decomposed into (expressed

as the sum of) appropriate elementary patterns, and patterns of the types

sought later can be synthesized from appropriate elementary patterns.
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Let (X, U) be an arbitrary network, and let (X,W) denote the enlarged

network described earlier where W = UUU'. If C is a simple x-y path

in (X,W), an associated flow pattern f in (X, U) is defined as follows:

f 1 if UEC

f(u) = -1 if u'cC

0 if neither uEC nor u'EC.

It is easily verified that f is an x -. y flow pattern whose value is 1. Such

flow patterns are called elementary x -y path flows (see Fig. 2).

If C is a simple cycle in (X, W), and f is defined in the same manner,

it is easily seen that f is a zero-valued flow pattern, called an elementary

cycle flow.

The following lemma establishes the fact that an arbitrary xI -x 2

flow pattern can be expressed as the sum of conformal elementary flows.

Lemma 1

If f is an xI -lx 2 flow pattern of value k in a network (X, U), and

f(u)f 0 for at least one arcucU then it is possible to express f as a sum

of the form

f=g + . +g k +h, + . +h n

where the gi's are k elementary x, -_x 2 path flows, the hj's are

elementary cycle flows, and the gi's and h.'s are jointly conformal.

Proof. Assume first that k > 0. Since Sf(x 1 ) = k > 0 there exists

either an arc ucU(x I -*) such that f(u) > 0 or else an arc vcJ(-.x I ) such

that f(v) < 0. (Of course arcs of both types may exist. ) Let u1 denote an

arc of either type, and let yI denote its other end-point. Since u1

15



contributes flow toward yl, and since Qlf(yl) = 0 (assuming yl + x2 )

there is either an arc ueU(y 1 -e) with f(u) > 0 or else an arc vEU(-y

with f(v) < 0. Let u2 be such an arc and let Y2 denote its other end-

point. Continuing in this manner, one of two possibilities must eventually

arise. A stage k may occur such that { X1 , Y, Y2' .. . " Yk-1I are all

distinct vertices, but that Yk = x, or Yk = Yj for some j < k. If this does

not happen a stage k must occur eventually such that Yk = x2 ' since there

are a finite number of vertices. In either case let { wl, w2 ... ., WO

denote the sequence of arcs of W related to { U1 , u2 , *. ., uk) as

follows: wi = ui if f(u i ) > 0 (i.e., if y, is the terminal vertex of u.),

while wi = u! if f(u.) < 0 (i.e., if yi is the initial vertex). If Yk = yj for

some j < k then{ wj+1 , wj+ 2 . .. , wk ) is a simple cycle. Similarly,

if Yk = xl the entire set of wi's is a simple cycle. If the yi's are distinct

but Yk = x 2 then the entire set of wi's forms a simple x1 -x 2 path.

Denote by 11 the elementary cycle flow or elementary x, -- x2 path

flow corresponding to the cycle or path determined in this manner, and

set f = f - 1 In the former case f1 is again an x, -. x2 flow pattern of

value k. In the latter case f1 is an x I - x2 flow pattern of value k - 1.

In either case if the value of f1 is greater than zero a second elementary

flow 12 can be "extracted" by repeating the process. Let f2 = f1 - 1 = f -
i

11 - I2 'In general, having determined f. = f - 1 1. either f. has value
1 j= J 1

zero or else another elementary path or cycle flow Ii+1 can be found so
i+ 1

that one can define f i+ = f - Z 1.. But every time an elementary flow1 J

is subtracted the effect is to reduce the value of certain positive arc

flows by one unit, increase the value of certain negative arc flows by
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one unit, and leave unchanged the flows in arcs not associated with the

cycle or path. Such modifications can occur only a finite number of

times before all arc flows are reduced to zero. So eventually a stage m
m

is reached such that f = f -Z 1. is a zero-valued flow pattern z, and
m lj

t 1 12, . ., 1 ) consists of k elementary xl'-x 2 path flows and m - k

cycle flows.

If z is identically zero the desired decomposition has been produced.

If not, let y be any vertex such that z(u) > 0 for some uEU(y-) or else

z(v) < 0 for some vEU(-*y). Since 1z (x) = 0 for all XEX, one can again

generate a sequence of arcs as before. In this case x1 and x2 do not play

an exceptional role, and e--entually the path determined by "tracing"

flow through a succession of vertices must lead back to a vertex previ-

ously encountered. When this occurs, another cycle flow lm+1 is

determined, yielding another zero-valued pattern z1 = z - 1 m+ Either

z1 (u) = 0 for all uEU, or still another cycle flow 1m+ 2 can be "extracted. "

Ultimately one obtains Z = z - 1 m+ - 1 . . - 1p, where Z is

identically zero. But then f = Z 1. + z 1. where k of the 1.'s are path
lJ 1 J 3

flows and p - k are cycle flows. Setting n p - k the desired decompo-

sition has been obtained. (If f was initially of value zero, only the part of

the process related to decomposing z is required. )

The fact that the elementary flows are conformal follows from the

nature of their selection. Arc flows were consistently chosen that agreed

in directioii with those of the original pattern f. If f(u) > 0 then 1. (u) > 0

for every j, while if f(u) < 0 then lj(u) < 0 for every j. (More precisely

in the former case l(u) = 1 for f(u) of the elementary flows and l(u) = 0
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for the others. In the latter case l(u) = -1 for -f(u) elementary flows

and lj(u) = 0 for the rest. ) This completes the proof.

In order to clarify the foregoing procedure Fig. 3 illustrates two

decompositions of a flow pattern of value 2 into conformal elementary

flows. (It should be noted that such decompositions are not in general

unique. )

A network (X, U) is said to be capacitated if two integer-valued

functions b and c are defined on U and satisfy the following relation:

c(u) > 0 and c(u) > b(u) for all ucU .

The integers c(u) and b(u) are called the upper and lower bounds on

flow in arc u respectively. A flow pattern f is feasible in arc u if

b(u) < f(u) < c(u). If b(u) < 0 this means that the set of feasible flows

in u range from c(u) units of flow in the direction associated with u to

-b(u) units of flow in the reverse direction. If b(u) > 0 one says that the

flow in u is "forced" to be in the direction of arc u, and to range from a

minimum of b(u) to a maximum of c(u) units of flow. A flow pattern is

feasible in a network if it is feasible in every arc of the network.

The following lemma concerning feasible flow patterns will be

required in later sections.

Lemma 2

Let f and f2 be feasible x -y flow patterns having values k1 and

k2 < kI; and let the x -*y flow pattern f, - f2 be written as a sum of

conformal elementary flows:

f -f2--g1 +  + gk + h , +  + h n

18
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where k=k - k Thenf2 + S is also a feasible x--y flow if S is the

sum of any subset oft g . . .v gk' hl' . . ., h.n)

Proof. Since the g is and h.'s are jointly conformal, in any arc u

they are all nonnegative if f1 (u) > f2 (u) or all nonpositive if fl(u) < f2 (u).

In either case adding a subset of them to f2 yields an arc flow f(u) that

lies between the values fI(u) and f2 (u). Since fI(u) and f 2 (u) each lie

between b(u) and c(u) it follows that f(u) does also. Hence f is a feasible

flow pattern. This completes the proof.

A network is said to be weighted if two functions a and a2 called unit

cost functions are defined on the set of arcs, whose values are nonnegative

real numbers. If u is any arc, al(u) is considered the unit cost of flow

in the direction of the arc, and a2( u) is the unit cost of flow in the oppo-

site direction. If f is a flow pattern the cost of flow in u, denoted by

T [f(u)], is defined as a,(u) • f(u) if f(u) >0, and as -a 2 (u) ' f(u) if

f(u) < 0. Thus in any case the cost of flow in an arc is nonnegative. The

total cost of a flow pattern f is denoted by T(f). (Two cost functions are

specified in order that asymmetric unit costs may be reflected. ) The

problems investigated in the remainder of this paper deal with con-

structing feasible flow patterns whose costs are minimum, in a given

capacitated and weighted network. [ Of course if b(u) > 0, a 2 (u) is

irrelevant, since no feasible arc flow is such that f(U) < 0. ) Feasible

patterns whose costs are minimum will be called ideal patterns.

An important relation between the costs of certain flow patterns is

given in the following result.
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Lemma 3

If f, g, and h are x -y flow patterns in the same network, and g and

h are conformal, then

T(f+ g+h)- T(f+ g) >T(f+h)- T(f).

Expressed differently the incremental cost resulting from adding h to

f + g is greater than or equal to the incremental cost resulting from

adding h to f alone.

Proof. Let u denote an arbitrary arc of U, and set

Tu = W[f(u) + g(u) + h(u)I - T [f(u) + g(u)] - T [f(u) + h(u)] + T[f(u)]

One can also write T asu

Tu= Jf(u )+g( u)+h( u ) ai (u) -If(u ,+g( u)l aj(u )- If( u)+h( u ) a k(u )+ If (u) ' am (u ,,

where ai (u) is al(u) or a 2 (u) depending on whether [ f(u) + g(u) + h(u)]

is > 0 or < 0, and aj, ak, and a are similarly determined. It will be

shown that T > 0 for all uEU.
U-

Suppose that f(u) > 0. [ If f(u) < 0, u could simply be reoriented and

f(u ) could be replaced by -f(u) without essentially changing the flow pat-

tern. Of course then g(u) and h(u) must also be replaced by their nega-

tives and a 1 (u) interchanged with a2 (u). ) Since g and h are conformal,

one of the following sets of inequalities must hold:

f(u) > 0, g(u) > 0, and h(u) > 0 ,

or

f(u) > 0, g(u) < 0, and h(u) < 0.

If the first set of inequalities holds, then the absolute value signs are

superfluous in the expression for Tu, and ai = aj = 
k = am = a,. By

evaluating Tu, T u = 0 is obtained. If the second set of inequalities
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holds, but [f(u) + g(u) + h(u)1 > 0, then [f(u) + g(u)1 I> 0 and

[ f(u) + h(u)] 2 0, and T u = 0 is again obtained. The remaining case is

that for which f(u) > 0, g(u) < 0, h(u) 0, and f(u) + g(u) + h(u) < 0.

In this case, T can be written as

Tu = -[ f(u)+g(u)+h(u)] a2 (u) - I f(u)+g(u) a a(u) - If(u)+h(u)I ak(u) + f(u)a,(u).

Depending on the relative magnitudes of f(u) and g(u), If(u) + g(u)I a (u)

is equal to either [ f(u) + g(u)] aI(u) or -[ f(u) + g(u)] a2 (u). Similarly

If(u) + h(u)I ak(u) can be expressed either as [ f(u)+ h(u)Ial(u) or else

as -[f(u) + h(u)1a 2 (u). By substituting these expressions in the above

equation for TU in all (four) possible combinations and simplifying the

resulting expression, an expression for Tu that is clearly_> 0 is always

obtained. Hence for every ui U, Tu > 0. Hence I T > 0. But this is

equivalent to the assertion of the lemma, and hence the proof is complete.
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STATEMENT OF FLOW PROBLEMS A, B, AND C

In this section three specific network flow problems are stated. These

are designated as Problems A, B, and C. The remainder of the paper is

devoted to the presentation of complete solutions to these problems.

As common assumptions for all three problems it is assumed that a

capacitated and weighted network (X, U) is given. Two vertices x1 and

xn are distinguished from the remaining vertices, and are to be considered

as the unique source and unique sink, respectively, of all flow patterns of

interest. In other words the class of flow patterns under consideration is

limited to the class of x1 - nx flow patterns. Retaining the symbols intro-

duced earlier, b(u) and c(u) denote the lower and upper bounds of flow in

arc u, and a1 (u) and a2 (u) the unit costs appropriate to the two directions

that flow may assume in arc u.

For Problem A it is further assumed that b(u) < 0 for every uc U.

For such a network, called a Type A network, it is evident that a feasible

x1 -x n flow pattern having value 0 exists, viz., the pattern defined by

f(u) = 0 for all uc U. This pattern is in fact ideal, since T(f) = 0 and

T(g) _ 0 for every feasible flow pattern g. It follows from Lemma 2 that

if a feasible x1 -xn flow pattern of value k exists in a Type A network,
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then a feasible x1 -x n flow pattern exists having value i for i =1, 2, . .. , k.

Since there are at most a finite number of feasible flow patterns because all

arc bounds are finite and arc flows must be integers, this implies that there

exist ideal x1 -Wxn flow patterns having values 1, 2, . . ., k. The largest

k for which feasible x, -xn flow patterns exist will be called the x1 -X n

capacity of the network. In view of these considerations the following

problem is always meaningful:

Problem A. Given a network (X, U) that is weighted and capacitated,

and such that b(u) < 0 for all u e U; develop a finite procedure that will

(a) determine the x1 -Oxn capacity M of the network, and (b) determine a

specific ideal x1 -x n flow pattern having value i for i = 1, 2, . . ., M.

By a "finite procedure" is meant one that, for every network of the

type under consideration, will yield a solution after a finite number of

"simple" steps. A simple step is an elementary arithmetical operation

or comparison of magnitudes performable by a digital computer. Although

the procedure given here will not be broken into ultimate operations it

will be given in sufficient detail so that this could readily be done.
1

Problem A is discussed and solved in full detail in ORO-TP-15. A

restatement of the solution procedure and some of its important charac-

teristics is given in this paper because of the intimate relation of this

problem with Problems B and C.

The assumptions for Problem B differ from those of Problem A in

only one respect: it is assumed that b(u) > 0 for at least one arc uc U.

Networks of this type are called Type B networks. Thus there is at least

one arc in which the flow is required to be in a specified direction, viz.,
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the direction associated with the arc. It is easy io construct networks of

this type for which no feasible flow, of any value, exists. Suppose, for

example, that U(-xl) and U(xn--. ) are empty sets, so that no arc is directed

toward the source or away from the sink. Then if 2ucU(Xl -.. ) b(u) >

EuEU(-xn ) c(u) no feasible xI -xn flow pattern is possible because the

first summation is a lower bound on the value of flow, whereas the second

summation is an upper bound. However, if any feasible x1 -*Xn flow

patterns exist, then it will be shown that there exist minimum and maxi-

mum values, m and M, such that feasible flows exists for every value i

such that m < i < M. The following problem is therefore always meaningful:

Problem B. Given a network (X, U) that is weighted and capacitated,

and such that b(u) > 0 for at least one arc uc U; develop a finite procedure

that will (a) determine whether any feasible x1 -- xn flow patterns exist,

(b) determine m and M if any feasible patterns exist, and (c) determine a

specific ideal x1 -OXn flow pattern having value i for i = m, m+ 1, . . ., M.

Problem C differs from the preceding ones in that it is concerned with

ideal and nonideal x1 -xn flow patterns having the same value. Since no

restrictions are placed on the sign of b(u), as in Problems A and B, the

problem is posed for both Type A and Type B networks.

Problem C. Given a network (X, U) that is weighted and capacitated,

and given a feasible x, _-Oxn flow pattern f0 of value k; develop a finite

procedure that will (a) determine whether or not f 0 is ideal, and (b) if f0

is not ideal, find an appropriate succession of transformations, starting

with fos each of which reduces the cost of the preceding flow pattern while

retaining its value and feasibility.
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A final note on the three problems is appropriate. A reasonable

solution to each problem must consist of something substantially more

efficient than an exhaustive procedure for generating and comparing all

possible feasible flow patterns. Such a procedure would in fact be finite,

but it is intended here that a procedure be devised that may be reasonably

implemented.
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A TRANSPORTATION APPLICATION EMBODYING
PROBLEMS A, B, AND C

This section considers a general class of problems arising in the

field of transportation-problems having to do with the determination of

"optimal" steady-state flows of materiel between certain origins and

destinations interconnected by a transportation network. Problem A is

presented as the mathematical formulation of the basic problem to be

solved. Problem B then arises in connection with the attempt to gain

control of the "continuity" of a succession of related problems of Type A.

Finally, problems of Type C arise when one wishes to alter some of the

parameters of the problem and determine whether or not optimality is

disturbed, and (if it is) to restore optimality in a computationally

efficient manner. The mechanics of solving Problems A, B, and C will

not enter into the discussion. It is simply assumed here that efficient

algorithms are available.

For the sake of concreteness suppose that one is concerned with the

problem of moving goods from three locations yl, Y2, and Y3 to two

locations z1 and z2 through a highway network whose configuration is

shown in Fig. 4.. (Although a very simple situation is depicted here, it
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Fig. 4-Schemnatic of a Transportation Network
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should be noted that in practice the relevant network may have thousands

of arcs. It is in such situations that the need for powerful general

algorithms becomes apparent.)

Suppose that destinations z and z 2 must receive R 1 and R2 tons/day

respectively, and that origins yl, Y2 1 and Y3 can send at most S1, $2,

and S3 tons/day respectively. It is assumed that S1 + 2 + 3 > R 1 + R2

so that it is feasible to support the requirements at the destinations unless

bottlenecks in the highway system prohibit sufficient flow.

As a constraint on the highway system itself, assume that each link

joining two successive junction points has associated with it an integer

representing the maximum rate of flow, in tons per day, that ,an be

sustained during the time interval being analyzed. It is assumed that

these link "capacities'' apply in either direction and that they allow for

retrograde movement of vehicles. (For the application considered here,

only the "forward" movement of goods from origins to destinations is

considered explicitly. Retrograde movement is assumed to retrace the

forward routes. )

As a criterion for optimality, assume that it is desirable to determine

a movement pattern which minimizes total ton-mileage per day. Thus the

"unit cost" associated with each link is simply its physical length

measured in miles, so that the "cost" of flow in a link has the

dimensionality of ton-miles per day.

The problem is then one of determining the direction and rate of

flow in each link so that (a) the net input to destination z i is precisely

R,, (b) the net output from origin y1 is at most S., (c) the net output is

29



zero at all intermediate junction points, (d) the flow in each link does

not exceed its specified capacity, and (e) for all possible flow systems

satisfying a to d the one selected involves minimum total ton-mileage of

movement per day.

This problem can be reformulated as one involving a single origin

(source) and destination (sink) by proper augmentation of the highway

system to include certain hypothetical links. Figure 4b shows the con-

figuration of the augmented system. A hypothetical source x1 is added,

together with arcs directed from x1 to y1 , Y2 , and y 3 respectively. These

are assigned zero unit cost (or length) and capacities equal to the corre-

sponding capabilities S1, $2, and S3 . Similarly a hypothetical sink xn is

added, with arcs directed from z1 and z 2 to Xn. These also are assigned

zero length and capacities equal to R1 and R2 respectively. Note that the

links of the original highway system have also been oriented, so that this

finite, connected system of vertices and arcs forms an xi--Oxn network

in the technical sense. The orientations here are for frame-of-reference

purposes, so that the direction of flow may be indicated by the algebraic

sign. (Although the direction of flow can usually be predicted beforehand

for most arcs, in some of the lateral arcs it is not always clear which

direction an optimal pattern will require. )

For arcs of the original network, set b(u) = -K and c(u) = K, where

K is the capacity of the corresponding link, and set al(u) = a 2 (u) = L,

where L is the length of the link. For arcs of the form v (xl, yi) set

b(v) = 0, c(v) = S
i , al(v) = 0, and a 2 (v) = 0. For arcs of the form

w 2! (zx n) set b(w) = 0, c(w) = R, al(w) = 0, and a 2 (w) = 0.
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Since b, c, a., and a 2 have been defined for the entire xI -- Xn network,

and the network is of Type A (since b(u) < 0 for all u), Problem A can be

posed for this network. The x1 --Xn capacity M is clearly such that

M< 1 + R 2 , since flow can enter xn only through the two arcs that join

z and z 2 to xn, and these have capacities R 1 and R2 respectively. Hope-

fully the solution of Problem A will reveal that M = R1 + R 2 , so that the

requirements can in fact be feasibly fulfilled. Even if they cannot the

maximum-valued ideal flow pattern will indicate the maximum tonnage

that can be feasibly transmitted per day, and will further indicate a

specific pattern of arc flows that realize this maximum tonnage with

minimum cost (ton-mileage per day). The flows in a hypothetical arc

should, of course, be interpreted as the amount of materiel sent from an

origin or received by a destination, whichever is appropriate. Intro-

duction of these arcs is merely an artifice that enables one to treat y.,

Y2 1 Y3 ' z1 , and z 2 as intermediate vertices for which input equals out-

put, rather than as five exceptional vertices with distinctive constraints.

Since the artificial arcs were assigned zero unit costs the cost of an

ideal flow pattern in the augmented network is the same as the cost of

the " real" flow, viz., the flow pattern obtained by finally disregarding

the artificial arcs.

Suppose now that one is faced with the problem of determining

optimum routings for several successive time intervals. For example,

suppose that during month 1 the average daily demands at z1 and z 2 are

R and R2 , and that during month 2 they change to R, and R' respectively.

One can consider each month independently as a problem of Type A in the
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augmented network described above. However, it may well happen that

the optimum flow patterns determined for the two months display a serious

lack of "continuity. " For instance, one pattern may rely heavily on

northern routes and the other on southern routes. Or one may rely

mostly on y1 and Y2 as sources of supply and the other largely or perhaps

exclusively on y2 and Y3 "

Assume that a specific arc is relied on heavily in the optimal solution

obtained for month 1, and that the arc is not utilized in month 2. Although

the solutions individually satisfy the criterion of minimum ton-mileage per

day, taken together they may yield an unsound operational solution in

the light of other considerations not reflected in the mathematical model.

For instance, the use of this arc in month 1 may imply considerable

investment in terms of road or bridge rehabilitation if the problem

arises in a military context. To rehabilitate the link and then abandon

it in a later month may well be unreasonable in view of the overall

problem.

As a first measure month 1 might be reanalyzed, leaving all factors

unchanged except for the elimination of the arc in question. Suppose

that this is done, and that the new solution is not acceptable, either

because the minimum ton-mileage per day is unacceptably higher than

it was before or else because removal of the arc creates a bottleneck

preventing satisfaction of the total demands at z1 and z2 . In any event

assume that an analysis of the situation leads to the conclusion that this

highway link must be rehabilitated and used in month 1, and that it is

highly desirable to continue its utilization in month 2, thus lessening

reliance on other portions of the highway system.
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One way to handle this problem is to reanalyze month 2, forcing flow

through the relevant arc. In other words a Type B problem can be posed

that differs from the original Type A analysis of month 2 only in that

b(u) > 0 for this arc and a certain minimum flow is required. Assume

that this analysis is carried out, obtaining a flow pattern f' with cost

(ton-mileage per day) T(f'), which can be compared with the original

month 2 solution f having cost T(f).

Since the month 2 problem was modified only in the direction of

adding additional constraints, clearly T(f') > T(f). It can happen that

the new solution, forced to involve the arc in question, is as cheap, in

terms of ton-mileage per day, as the old one. This can occur because

the ideal flow pattern having a given value is not necessarily unique, so

that although the original analysis of month 2 yielded an ideal pattern that

did not involve the arc, another ideal pattern may actually exist that

does. In any case a good "hard" number T(f') - T(f) is obtained, which

is a measure of the additional cost incurred if preserving continuity of

flow in the arc is insisted on. This is just one example of how a Type B

problem can be posed to "gain control" of a set of solutions to Type A

problems when the initial solutions are not sufficiently compatible in

terms of important constraints that were not initially built into the

formulation.

It is sometimes also profitable to formulate problems of Type C in

the context of a general transportation application of the above type.

Suppose that there is serious doubt concerning the accuracy of some of

the data. As an example, suppose that there is good reason to question
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the assumed capacity of an arc, and that this arc appears importantly in

the solution as it now stands. Letting c(u) be the capacity used in the

analysis, suppose that the optimal pattern saturates this arc, so that

f(u) = c(u). Assume further that there is now reason to believe that 2c(u)

is a better estimate of the arc's capacity, either because the original

estimate was bad or else because appropriate physical measures can in

fact double the capacity without undue expense. One approach would be

to start from scratch, posing a new Problem A that differs from the

original analysis only in that the capacity of u is increased. Another

possibility, and one that may save a great deal of effort, arises by

taking the original solution f, known to be optimal before, and inquiring

whether or not it remains optimal when c(u) is doubled. Clearly f is

still a feasible pattern, which may or may not be optimal. Studying this

Type C question, either f will emerge optimal in the modified problem,

or else f can be used as the starting point for finding an ideal pattern fI.

Here again a quantitative measure T(f) - T(f') is obtained of the difference

it makes whether c(u) or 2c(u) is the capacity of u.

The preceding remarks are only intended to be suggestive of a host

of problems that can be studied by using formulations of Types A, B, and

C singly or in combinations. Network flow theory is applicable to many

problems, including problems in which the network is itself entirely an

artifice and has no physical counterpart. Where the network does exist,

as in transportation problems, it is especially easy to formulate the

appropriate mathematical questions because the model is so direct a

reflection of reality. If the resulting questions are of any of these three

types the methods of this paper or comparable methods are applicable.
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SOLUTION OF PROBLEM A

In this section a resumi of the procedure for solving Problem A that

appeared earlier in ORO-TP-151 is given, together with the intermediate

mathematical results required to justify the procedure. This information

is repeated here because of the intimate relation between Problems A, B,

and C. It will be seen that the solution to Problem B involves solution of

Problem A in a related network and that the solution of Problem C requires

application of the central ideas that were needed for solving Problem A.

Recall that a Type A network is a weighted and capacitated network

(X, U) such that b(u) < 0 for every arc ue U.

It was noted earlier that a Type A network has the property that there

exists an integer M, called its x1 -4x capacity, such that feasible x1 -x1 n n

flow patterns exist having values 0, 1, 2, . .. , M, but none exist having

values greater than M.

Let (X, W) be the enlarged network obtained by introducing the set of

"reverse" arcs U' in the manner described earlier. If f is a feasible

x1 -oxn flow pattern in (X, U) and P is a simple x, -- xn path or a simple

cycle in (X,W), P is said to be saturated relative to f if it contains an

arc uc U such that f(u) = c(u) or an arc u'e U' such that f(u) = b(u).,
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Otherwise, P is considered unsaturated relative to f. If gp is the

elementary x1 -Wxn path flow or cycle flow corresponding to P then it

follows that f + gp is feasible if and only if P is unsaturated relative to f.

The following result provides the basis for a general procedure for

finding feasible patterns having values 1, 2, . .. , M.

Lemma 4

If f, is a feasible x, -6x flow pattern in (X, U) having value i, and
I n

i < M where M is the x, -"Xn capacity of the network then there exists an

unsaturated simple x1 ---xn path in (X,W). If i = M every simple x1 -x n

path is saturated.

Proof. The last statement follows immediately. For assume i = M

and P is an unsaturated simple x1 -Oxn path. Then f + gp is feasible,

where gp is the corresponding elementary x, -xn flow. But f + gp has

value i + 1 = M + 1, contradicting the assumption that M is the x, --Wxn

capacity of (X, U).

Assume now that 0< i < M, and that fi is a feasible x1 -oxn flow pattern

of value i. Let f i+ be any feasible x1 -oxn flow pattern of value i+1. Then

fi+1 - fi is an x1 -4Xn flow pattern of value 1. According to Lemma 1

f.+- fi = g +h+h 2 
+  h

where g1 is an elementary x1 -x n path flow. But from Lemma 2 it follows

that f, + g1 is feasible. Hence g1 must correspond to an unsaturated path

in (X,W). This completes the proof.

Thus if one has an algorithm for finding an unsaturated simple x, -xn

path relative to a given feasible x I -Wxn flow pattern, whenever one exists,
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the following procedure will generate feasible patterns for all possible

values:

(a) Let f be the feasible x1 -Xn flow pattern of value zero defined by

f0 (u) = 0 for all uE U.

(b) In general, having determined a feasible pattern f. of value i, apply1

the algorithm to find (if possible) an unsaturated x1 -- xn path P.

(c) If no such path P exists, i is the x1 -- Xn capacity of the network,

and tf 0 fo' . . . f. lis a complete set of feasible x -xn patterns.

(c') If P is an unsaturated x1 -x n path, let gp be the corresponding

elementary path flow. Then f. = f. + gP is a feasible pattern of valuei+1
i + 1, and step (b) can be repeated with f. in place of fL.i+1

The solution of Problem A revolves around the fact that if care is

taken in the above procedure to always select the "best" unsaturated path

at each stage then the sequence { fop fit " fM} will consist of ideal

flow patterns. The following property possessed by ideal flow patterns

can be established.

Lemma 5

If fi is an ideal x1 -Oxn flow pattern of value i, and i < M, then an

elementary x1 -- xn path flow g exists such that f i+ = fi + g is an ideal

x--&xn flow pattern of value i + 1.

Proof. Let f i+ be any ideal x1 -- Xn flow pattern of value i + 1. Such

a pattern must exist since i < M. Then f - fi is an x1 -xn flow pattern,

which can (using Lemma 1) be written as

f. fi = gP + h +  + h
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where g is an elementary path flow corresponding to some simple x1 -x n

path P, and gP is conformal with the elementary cycle flows hi, h2, . .. hn

For convenience set h = Ehi, so that

fi+1 =fi + OP + h ,

where h is now a zero-valued flow pattern conformal with gp, From

Lemma 2 it is known that fi + gP and fi + h are feasible flow patterns

whose values are i + 1 and i respectively. Lemma 3 can be applied to

obtain

T(f i + gp + h) - T(f i + gp)_> T(f i + h) - T(fi).

Since f. is ideal the right-hand side is nonnegative. Hence1

T(f i + gP + h) 2 T(f i + gP )

But fi + gP + h = fi+ 1. Since fi+ 1 is also ideal, equality must hold in the

preceding expression. So fi + gP also minimizes T, i.e., fi + gP is ideal

for value i + 1. This completes the proof.

Lemma 5 is of fundamental importance for the attack on Problems A,

B, and C adopted here, and hence some amplifying remarks concerning its

significance are in order. If fi is ideal but not maximal, i.e., if i < M,

all possible feasible patterns of value i + 1 can be obtained from fi by

adding appropriate patterns of value 1. Specifically, if f i+ has value

i + 1, one merely adds (fi+1 - fi) to fi. Although there are a finite number

of distinct feasible patterns of value i + 1, for nontrivial problems in

complex networks the number may be astronomical. Lemma 5 asserts

that of all patterns of value 1 it is sufficient to consider only the very

special class of elementary x1 -Oxn path flows. Of these, only those

corresponding to unsaturated paths are relevant since if P is saturated,
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relative to fi, then fi + gP is not feasible and hence not ideal. Of course

the set of unsaturated paths may still be extremely large. Fortunately a

fairly efficient constructive process can be described for determining one

that minimizes T(f i + gp).

The determination of the "best" x1 --§xn path consists essentially of

evaluating for each arc w of U and U' the increment of cost that would

result if one unit of flow were added to f(w) and of selecting a path of arcs

whose total incremental cost is minimum. Before making this precise it

is necessary to introduce several new terms.

If uE U, and u - (x, y) let u denote the elementary x -y flow pattern

obtained by considering u as an x -y path. Thus for all v c U

A ji if v =u
u(v) 0 if v u

A
Similarly let u' denote the elementary y--x flow pattern corresponding to

the y -x path u', so that for all yoE U

A -1if v' U'
U -M 0 if V' u?

A
Thus with every u E U and every u' c U' is associated the flow pattern u or

A
u', called the characteristic flow of arc u or u'. If P is a simple x1 -'*xn

path the corresponding elementary flow pattern gP can be written as

A
1wEP w.

If f is a feasible x1 -*Xn flow pattern, and w c U or w e U', the effective

cost of w. relative to f, is denoted by e(w;f) and defined as follows:

e(w;f) = I T(f + w) - T(f) if (f + ),) is feasible
e60 if (f + w) is infeasible
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If w c (x,y), e(w;f) may be considered as the increase in cost which results

by taking a feasible pattern f and superimposing one unit of flow in w from
^

to y. In case this results in an infeasible pattern f + w, the convention

is adopted that an infinite increase in cost results.

If one considers the definition of the cost of flow in an arc in terms of

a and a2 then e(w;f) may be evaluated as follows:

For ue U,

[c0c if f(u)=c (u)

e(u;f) = if 0 < f(u) < c(u)

-a 2 (u) if f(u) < 0

For u' c U,

(0 if f(u) = b(u)

e(u';f)= a2 (u) if b(u) < f(u)< 0

-a,(u) if 0 < f(u)

If P is a simple xI -xn path or a simple cycle in (X,W) the effective

cost of P, relative to a feasible x1 -Oxn flow pattern f, is defined by

e(P;f) = ZWCP e(w;f)

One can establish the following result:

Lemma 6

If f is a feasible x, .xn flow pattern in (X, U), P is a simplex 1 -x

path or a simple cycle in (X,W), and gP is the corresponding elementary

path flow,then e(P;f) = if and only if P is saturated, i.e., if and only if

f + gp is infeasible. If e(P;f) < - so that f + gp is feasible then

T(f + gp) = T(f) + e(P;f)
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Proof. If e(P;f) = - then e(w;f) = o for some wEP. If w = ueU then

f(u) = c(u). If w = u'e U' then f(u) = b(u). In the first case, u is saturated

in the direction of its orientation. In the second case it is saturated in the

reverse direction. In either case it is saturated in the direction associated

with P, so P is saturated. Conversely if P is saturated there is an arc

wE P whose flow cannot be feasibly increased by one unit in the direction

of w. If w = uc U this implies that f(u) = c(u). If w = u' E U' it implies

that f(u) = b(u). In either case e(w;f) = c; hence e(P;f) = c.

It remains to show that if e(P;f) < then T(f + gp) = T(f) + e(P;f).

Let w be an arc of P, and assume first that w = ue U. Let T u(f) denote

the cost of flow in u relative to flow pattern f, and similarly for Tu(f+ gp).

If f(u)> 0 then (f+ gp)(u) = f(u) + 1, Tu(f) = f(u)a,, and Tu(f+ gp) =|f(u) +

1]a 1 (u). Hence Tu(f+ gp) - Tu(f) = al(u) = e(u;f). On the other hand if

f(u) <0 then (f + gp)(u) =f(u) + 1, Tu(f) = -f(u)a 2 (u), and Tu(f + gp) =

-1 f(u) + 1a2(u) . Hence Tu(f + gp) - Tu(f) f - a2 (u) = e(u;f). The

reasoning is similar if w = u' e U'.

Hence for every ueP, Tu(f+ gp) = Tu(f) + e(u;f), and for every u'cP,

Tu(f + gp) = Tu(f) + e(u';f). Adding the right-hand side of all these equations

yields T'(f) + e(P;f), where T'(f) is the total cost of flow relative to f in

all arcs involved in P. Adding the left-hand members yields T'(f + gp),

where this expression has a similar meaning but relative to f + gp. Since

the cost of flow in arcs not associated with P is the same relative to f and

to f + gp it follows that T(f + gp) = T(f) + e(P;f). This completes the

proof.
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It was seen earlier (Lemma 5) that if f is a nonmaximal ideal flow

pattern then there exists a path P such that f + gp is ideal. In view of

Lemma 6 one must clearly select P in such a way that e(P;f) is minimum.

Assume for the moment that an algorithm can be devised, which will

be called Algorithm 1, that will perform the following function: given an

ideal x1 --xn flow pattern f. of value i, it will find a simple x, -*xn path

P such that e(P;f) is minimum with respect to all such paths.

In terms of Algorithm 1, which will be described in detail shortly,

one can state the following procedure that will always solve Problem A.

PROCEDURE FOR SOLVING PROBLEM A

(a) Let f0 be the flow pattern that is defined by f(u) = 0 for all u E U.

This is an ideal x1 -*xn flow pattern of value zero.

(b) In general, having determined an ideal flow pattern fi of value i,

apply Algorithm 1 and find a simple x1 -x n path Pi such that e(Pi;fi) is

minimum.

(c) If e(P.;f.) - then i = M, i.e., there are no feasible x1 -'x

flow patterns having larger values. So {f0, f 1 S " ° fi } is a complete

solution to Problem A.
(c') If e(Pi;f) < - then f i+ = fi + gi is an ideal x1 -xn flow pattern of

value i + 1, where gi is the elementary path flow corresponding to Pi.

One can now replace f. with f i+ and repeat b.

In order to accelerate the process of finding the solution set

fo' fl' f " 'M ) it is desirable to increase the value of successive
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patterns by more than one unit if possible. The following result provides

a mechanism for doing so.

Lemma 7

Let fi be an ideal, nonmaximal x1 --WXn flow pattern in (X, U) having

value i, and let Pi be a simple x1 -- xn path in (X, W) that minimizes

e(P;fi). For each arc we Pi define Qw as follows:

If weU,

f c(w) - f(w) if f(w) > 0
w -f(w) if f(w) < 0

If w = u, C U?,

= f(u) - b(u) if f(u) <0
w f(u) if f(u) > 0

Finally, let Q =mi Q Then for 1< k QweP i Q T f

fi+k = fi + kgi

is an ideal x, --Wxn flow pattern of value i+k, where gi is the elementary

path flow corresponding to P. and (kg ) (u)- k • g,(u) for all u E U.

Proof. In order to prove this lemma the following subsidiary result

will first be established: If fi' f i+ and fi+2 are ideal flow patterns

having values i, i+1, and i+2 then

T(fi+2 ) - T(fi+l) > T(fi+1 ) - T(fi)

According to Lemma 1, fi+2 can be expressed as

f = fi + g + 92 + h
i+2 I 1 2

where g, and g2 are elementary path flows, b is an appropriate zero
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valued flow (corresponding to a sum of cycle flows) and gl, g2 , and h are

conformal. Moreover from Lemma 2 it follows that fi + g1 + g2 and fi + h

are feasible. From Lemma 3 one obtains the relation

T(f i+2) - W(f i + g1 + g2 ) -2 W(fi + h) - W(fi).

Since fi is ideal the right-hand side is nonnegative. Hence

T(f 2 )> T(fi + g 2 )

But since fi+2 is ideal, and fi + gl + g2 is also feasible and has value i+ 2,

equality holds and fi + g, + g2 is also ideal. Applying Lemma 3 again

yields the relation

W(fi+ g1 + g2 ) - T(f+ gl ) > T(fi+ g2 ) - T(f)"

Since fi+ is ideal, T(f i + gl) _ T(fi+l) and T(f i + g2)_ T(fi+,). Hence

T(fi+ g1  + g2 ) - T(fi+)> T(fi+) - T(fi)

But the leftmost term is equal to T(fi+2 ), and hence

T(fi+2 ) - T(fi+l) > T(fi+1 ) - T(f)•

Now let f. be an ideal flow pattern of value i, and again assume that1

patterns with values i+ 1 and i+ 2 exist; i.e., assume that M > i+ 2. Let

R be a simple x1 --Wxn path minimizing e(P;fi), so that fi + gR is ideal,

where gR is the corresponding elementary path flow.. Also, let S be a

simple path that minimizes e(P;f i + gR)' so that fi + g R + g. is ideal.

From the inequality established earlier in the proof e(S;f i + gR) > e( R;f i ).

Now if R had been such that e( R;f i + gR) = e(R;f i ) then f, + 2gR would

necessarily also be ideal. Similarly if e(R;f i + 2gR) = e(R;f i ) then
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fi + 3gR will be ideal. In general, fi + kgR will be ideal so long as

9[R;f i + (k - 1)g R I = e(R;fi) .

Since the effective cost of a path is the sum of the effective costs of

its component arcs, fi + kgR will be ideal as long as

e[w;f i + (k- 1)gR] = e(w;fi)

for all wcR. If wE U and f(w) > 0 each successive unit of flow will cost

a,(w) until w is saturated, i.e., until flow equals c(w). Then the effec-

tive cost changes to -. So the effective cost for arc w changes when

k = c(w) - f(w). IfwcU and f(w) < 0 each unit of flow added in the

direction associated with w will cancel a unit of flow, resulting in a

reduction in cost of -a 2 (w). This will continue until all flow is canceled,

at which time the effective cost of w changes from -a 2 (w) to a,(w). So

in this case the effective cost changes when k = -f(w). The two cases

that arise when wc U? are very similar, and the detailed reasoning is

omitted. In all cases the value of Qw given in the statement of the lemma

is the smallest value of k such that e(w;fi + kgR) f e(w;fi). So if Q=

min Q then Q is the largest integer k such that
wER w

T[ fi + k g R  T[fi + (k-1)gR] =Tfi + gR]- T[f i

Hence fi + kgR is ideal, for k = 1, 2, . .. , Q. This completes the proof.

It follows from the fact that e(Pi;f) < that k > 1. In many

applications k will be large if the x1 -xn capacity is large, and the

number of repetitions of step b of the above procedure will be greatly

reduced.
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An algorithm for finding P'. that minimizes e(P;fi) is obtained by

treating e(w;fi) as the distance from x to y, where wEW and w (x,y).

The problem of finding P i is then one of finding the shortest distance

from x1 to xn through the network (X, W). Efficient algorithms for

finding shortest paths exist, provided the distances are such that no

cycle has negative total length. Fortunately this is the case. The

following result can be established:

Lemma 8

A necessary and sufficient condition that f be an ideal xI --Oxn flow

pattern in (X, U) is that e(C;f)> 0 for every simple cycle C in (X,W).

Proof. If f is ideal then certainly e(C;f) >0 for all simple cycles C.

For if e(C;f) < 0 for some C then from Lemma 6 it would follow that

T(f + gC) < T(f), contradicting the fact th it f is ideal.

Now suppose that e(C;f) > 0 for all simple cycles C. Let g be any

x1 -xn flow pattern having the same value as f. Using Lemma 1, g can

be written as f + h1 + . . . + hn, where the hiIs are conformal cycle

flows corresponding to appropriate cycles C1, C 2 , . . ., Cn . Repeated

application of Lemma 3 yields

T(f+h 1 + . . +h n)- T(f+h 1 +  + h n-1).T(f+hn)- T(f)
T(f+ ht + . . . + h+hi) - T(f)+ h, + hn-2)_ ?T(f+ hn-1) - T(f)

T(f+ h1 + h2 ) - T(f+ hl)> T(f+ h2 ) -T(f)

T(f+ h1 ) - T(f)>0.
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But the right-hand side of each inequality is > 0 by assumption.

Adding the left sides yields

T(f h+ h1 + +hn - T(f) > 0.

Since f+h + . . + hn =g it follows that T(g) > T(f). Since g

was arbitrary this implies that f is ideal. The proof is complete.

In order to describe a specific algorithm having the characteristics

of Algorithm 1 suppose that the arcs of W are arranged in a fixed sequence

w 1 , w2 , . . ., wm. (It is particularly useful to let u and u' be adjacent

terms, since one uses the same basic data when considering u and u'.)

For convenience let e i denote e(wi;f) where f is the ideal flow pattern

under consideration. The following procedure has the desired

characteristics.

Algorithm 1

(a) Associate numbers, termed labels, with vertices, denoted by

V(xi) as follows:

V(x 1 ) = 0

V(xi) = o for i = 2, 3, . .. , n .

(b) Starting with w1 take each arc in turn and do the following:

(i) If wi 4 (xxk) and V(xk) > V(x ) + e i replace V(xk) by the

smaller quantity V(x. ) + e i and record wi as the "approach arc" asso-

ciated with vertex xk. (If this is not the first iteration, wi supersedes

any approach arc previously associated with xk. )

(ii) If V(xk) < V(x 1 ) + ei do not modify V(xk), but consider

arc w i+ next.
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When i = m proceed to step c.

(c) If, in the course of considering w1 , w2 , . . ., wm in step b, at

least one label was modified, repeat step b.

(c') If no vertex was relabeled, stop. • At this time V(Xn) equals

min e(P;f) taken over all simple x1 -x n paths P. If V(x n) = -, f is a

maximum-valued flow. If V(xn) < - trace backward along the approach

arc associated with xn to its ini.tial vertex x . Trace backward alongn p

x 's approach arc to xq and continue until xI is reached. This willp•

yield a simple x1 -xn path (traced backward), minimizing e(P;f).

The remainder of this section provides a proof of the fact that this

algorithm will always produce the desired information in a finite number

of steps regardless of the network (X, U) and the ideal flow f under con-

sideration. Some of the properties of this algorithm will be needed in a

more general form in connection with Problem C. For this reason the

assumption that f is ideal is not made in establishing a number of

intermediate results.

One "iteration" of the algorithm will mean one complete pass through

the entire sets of arcs { w1 , w2 , . . ., wm}, relabeling a vertex whenever

appropriate. From the time that a vertex other than x 1 first attains a

finite label, it has associated with it an approach arc leading from

another vertex that must also have a finite label. The approach arc asso-

ciated with a vertex may change from time to time. Since the approach

arc involved in assigning a new label supersedes the previous one (if any)

identified with the vertex being relabeled, at no time does a vertex have
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more than one approach arc. Summarizing, if V(x) = ., x has no approach

arc. If V(x) < -, x has precisely one approach arc, but it is not necessarily

the same arc throughout the procedure.

Suppose that the algorithm is started and then interrupted at some time,

and that V(x) < - at this time, where x x1 . Then x must have associated

with it an approach arc, say v1 = (Ytx). Similarly V(yl) < -, so yl has

an approach arc v2  (y 2 ,Y). Repeating this reasoning v3  (y 3 ,Y 2 ) is

obtained, etc. In this process of tracing back along approach arcs one of

three situations may arise. These are:

(a) Vertex x 1 may be reached via approach arcs v., v2 , . .. , vm

(i.e., x1 is the initial vertex of v ), and it may be impossible to trace

back along another approach arc because x1 has no associated approach

arc. This will be the case if V(x) = 0, so that the original label of x 1

has not been altered. In this case the procedure has traced (backward) a

simple x1 -Oxn path of approach arcs (vm, Vm, . . ., v 2 , v1 }. (This

path is necessarily simple because no vertex has two approach arcs

leading to it. )

(b) The tracing procedure may lead to xl, but x 1 may have been

relabeled. In this case one can continue to trace backward, and must

inevitably return to some vertex reached earlier since each step leads

to another vertex with a finite label and every such vertex has an approach

arc leading to still another vertex. Once a vertex is repeated in this

tracing process, a cycle of approach arcs has been traversed (backward)

and further tracing will merely duplicate the route already covered. In

this case the set of approach arcs discovered by tracing takes the form of
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a cycle together with a path from the repeated vertex to x. (If the vertex

repeated is x itself the set of arcs is simply a cycle. )

(c) The tracing procedure may repeat a vertex without ever reaching

x1 . In this case the form of the set of approach arcs traced is the same

as in situation b, being either a cycle together with a path from some

vertex of the cycle to x, or else simply a cycle containing x. The only

difference is that x1 is not incident with any of the arcs traced.

In the remainder of this section for x + x,, A(x) will denote the set

of approach arcs traced backward from x, assuming that V(x) < -, i.e.,

that x has an approach arc. The set A(x) is called the approach set

associated with x. It will be shown that if the flow pattern f under con-

sideration is ideal, case a always holds, so that A(x) is always a simple

x1 -- 'x path. If f is not ideal, sooner or later case b or case c arises for

at least one vertex x. The important fact then is that there is a cycle of

approach arcs and that such a cycle can be used to reduce the cost of f.

The symbol A will denote the total set of approach arcs associated

with vertices at a given time during execution of the algorithm.

Lemma 9

If Algorithm 1 is applied to a feasible x1 -xn flow pattern and if the

procedure is halted at any time then, if weA at this time and if w - (x,y),

V(y)_> V(x) + e(w;f)

Proof. Note first that in this and in subsequent lemmas that

investigate the status at an arbitrary time during the algorithm, the labels
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and approach arcs referred to are those in effect at the time of interruption

unless the contrary is specified.

Since w is the approach arc associated with y at this time it follows

that V(y) = V*(x) + e(w;f) where V*(x) is the label that was associated

with x at the time y attained its present label. But V*(x) > V(x) since

the procedure never increases labels. It follows that V(y) > V(x) + e(w;f),

which completes the proof.

Lemma 10

If Algorithm 1 is applied to a feasible x, --.x n flow pattern and if P is

any simple x, -y path having k arcs then after k or fewer iterations of

the algorithm the following relation holds:

V(y)< e(P;f).

Proof. Let P ={w, w2, . . ., wk) where w1 Q (x ,yl), w2 Q ( y l ' y 2 ) 1

., wk a! (yk_,y). Let Vt( z) denote the label of vertex z after t iterations,

with the convention that V0 (z) denotes the original label of z. Then clearly

V1 (y1)< V0 (x1 ) + e(wl;f)

since every arc, including w, is considered as a candidate for relabeling

Y1 . Similarly,

V2 (y 2 ) < VI(y 1 ) + e(w 2 ;f) < V0 (xl) + e(wl;f) + e(w 2 ;f)

By repeating this reasoning this relation is ultimately obtained:

Vv(Y)< V(x 1 ) + Ek e(wi;f) = e(P;f) .

The second relation holds since V0 (x1 ) = 0. If the algorithm terminates
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after fewer than k iterations then at the time of its termination

V(Y) < V(Xl) + e(wl;f), . , V(yk)<V(yk-l)+ e(wk;f). Since

V(x 1 ) < 0 this again implies that V(Y ) <e(P;f). This completes the

proof.

Lemma 11

If Algorithm 1 is applied to a feasible x, -x n flow pattern f and if at

some time the set of approach arcs A contains a cycle then f is not ideal.

Proof. Suppose that C = { w1 , w2, . . .. wk ) is a set of approach

arcs that forms a cycle. (Note that C must be a simple cycle because no

two arcs of A ever terminate at the same vertex. ) Assume that w1  (

. (yk, ). By applying Lemma 9 the following inequalities are

obtained:

V(y 2 ) > V(.Yl) + .e(w1 ;f)

V(y 3 )> V(y 2 ) + e(w 2 ;f)

V(Y 1 ) _> V(Y k ) + e(w k;f ) •
k

It follows that 0> Z e(wi;f) e(C;f). Now let yj be the first vertex of

the set { Y1, Y2 ' . " Yk) which attained its present label. Then

V(yj) = V*(yj_,) + e(wj;f), where V*(yj_) was the label of yj-_ at that

time. By the way in which yj was chosen V(yj_1 ) < V*(yj_1 ). It follows

that one of the above inequalities is strict, so that one obtains the sharper

relation 0 > e(C;f). But then it follows from Lemma 8 that f cannot be

ideal. This completes the proof.
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Lemma 12

If Algorithm 1 is applied to a feasible x1 -4xn flow pattern f and if

V(x 1 ) < 0 at some stage then from this time on A contains a simple cycle.

Proof. Assume the algorithm is stopped some time after V(x 1 )

becomes negative, with A denoting the set of approach arcs at the time of

stopping. Let w be the approach arc associated with xi, and let y1 be

the vertex such that w 1 = (y, x1 ). Similarly let w 2 be the approach arc

associated with y,, and let y2 be such that w2  (y 2 Y1 ). One can con-

tinue to trace backward obtaining {w 3 , w4 , . . . } and {Y3 ' Y4 . . . .

Let k be the smallest integer such that wk - (ykYk-1 ) ' and such that Yk

coincides with x1 or with yj for some j < k. (A repetition must occur

eventually, since there are only a finite number of vertices. ) If Yk = xi

then {w, w2 , . . ., wk) is a simple cycle. If Yk = Yj then {wj+l, wj+ 2 ,

wk) is a simple cycle. In any case A contains a simple cycle.

This completes the proof.

The following result is an immediate consequence of the last two

lemmas:

Lemma 13

If Algorithm 1 is applied to a feasible x1 -Wxn flow pattern f and if at

some time V(xl) < 0 then f is not ideal.

Lemma 10 established the fact that V(y) is less than or equal to the

total effective cost e (P;f) of any x I -y path P after a sufficient number

of iterations. Lemma 14 establishes a reverse inequality. The two

results together are then used to show that after a sufficient number of
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iterations e(P;f) is precisely equal to V(y), provided that f is ideal and

that y ever attains a finite label.

Lemma 14

If Algorithm 1 is applied to a feasible xI -Oxn flow pattern f and if the

process is interrupted at any time then, if A(y) is a simple x, -y path

P for some vertex y = xl, the inequality V(y) > e(P;f) must hold.

Proof. Suppose P = {w, w2, . . ., wk) where w, --(x Yl)

w2 a! (y1 9y2 ), . . ., wk -1 (Ykly It follows from Lemma 9 that

V(y 1 )> V(x 1 ) + e(wl;f)

V(y 2 )> V(y 1 ) + e(w 2 ;f)

V(y) _> Vk_l) + e(wk;f ) .

Summing, and using the fact that V(xl) = 0 1because A(y) is a simple

path] V(y) > e(P;f) is obtained. This completes the proof.

Theorem 15

If Algorithm 1 is applied to a nonmaximal ideal x1 -xn flow pattern

in a Type A network having n vertices the algorithm will terminate (cease

to reduce any labels) after n or fewer iterations or complete "passes"

through the set of arcs. On termination, if V(y) < -, A(y) will be a

simple x I -.4y path that minimizes e(P;f) over all such paths. In

particular A(x n ) will be an optimal x, -x n path.

54



Proof. Since f is ideal, Lemma 11 states that at no time will the set

of approach arcs contain a cycle. So for every y + x,, either V(y) =

or else A(y) is a simple x1 --Oy path P. In the latter case V(y) > e(P;f)

according to Lemma 14. So V(y) is always as large as the effective cost

of some simple x1 -y path. But if Py is an xI -y path that minimizes

e(P;f), and if Py has k arcs then V(y) <e(P y;f) after k or fewer iterations,

according to Lemma 10. Strict inequality cannot hold, so V(y) = e(P y;f)

after k or fewer iterations. But k < n because a simple path cannot have

more than n arcs. So those vertices other than xI that ever have finite

labels achieve their smallest labels after n or fewer iterations. As for

x1 itself Lemma 13 asserts that it is never relabeled. It remains to show

that if V(y) < o on termination then A(y) is a simple x1 -y path of mini-

mum effective cost. j Note that P was any effectively "cheapest" pathY

in the above argument. A(y) may be a different one. ] Let P denote

A(y) on termination. Since V(y) = e(P y;f), and since e(P 1 ;f) > e(P y;f)

because Py is optimal it follows from Lemma 10 that e(P 1 ;f) = e(P y;f),

so P1 also minimizes e(P;f). In particular if y = xn , V(xn) < - on

termination because f is not maximal, by assumption. So the above

remarks apply, and A(Xn) will be a simple x1 -- xn path minimizing

e(P;f). This completes the proof.

If Algorithm 1 is applied to a maximal ideal x 1 -Xn flow pattern the

only difference is that, on termination (which still must occur after n or

fewer iterations), V(xn) = o. Hence if the algorithm is applied to any

ideal pattern the procedure will terminate after n or fewer iterations. If

V(x)o, f is maximal. If V(x) < co then A(xn) is an x -- xn path
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minimizing e(P;f). Hence Algorithm 1 has the properties required for

the procedure given earlier to solve Problem A. (Several of the lemmas

used to establish this fact will also be used to devise a procedure for

solving Problem C.)
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SOLUTION OF PROBLEM B

This section describes a complete solution to Problem B. Recaii

that a Type B network is a weighted and capacitated network (X,U) such

that b(u) > 0 for at least one arc ur- U. Moreover two vertices x1 and xn

are designated as the source and sink of all flow patterns under consider-

ation. The problem is that of finding an ideal x1 --.xn flow pattern for

each value realized by feasible x1 -xn patterns-with the possibility that

there may be no such values in the given network.

In essence the procedure given here for solving Problem B consists

of: (a) associating with the Type B network a related Type A network

(X, U), (b) solving Problem A for the related network, and (c) interpreting

the resulting ideal flow patterns as the solution to the Type B problem.

The construction of the associated network (X,U) employed here is a
2

modification of a construction used by Berge, and the procedure for

finding a complete set of ideal Type B flows is an extension of a procedure,

indicated in that reference, for determining a feasible Type B flow pattern

of least cost.
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Given a Type B network (X, U); construct a Type A network (X, U) as

follows:

(a) Augment X by adding two vertices xI and x n. (This notation is

adopted because these vertices will constitute the source and sink of flow

patterns in the augmented network. ) Let X denote X together with x and

x 21

(b) Let S denote the set of arcs of U such that b(u) > 0. (The set S

occurs frequently in this section and always has the above meaning. ) If

uc S and'u a! (x, y), construct two additional arcs u and u°" where

u ° - (xjly) and u °° ! (xxn). Let U0 and U°° denote the set of arcs of

type u ° and u °° respectively. Each of these sets is in one-to-one

correspondence with S.

(c) Construct two additional arcs w ° and w °°, where w °  ( 1., xl)

and w °° a! (Xn, xn). Let U denote the totality of arcs of U, U', and U °° ,

plus the two arcs w ° and w °°. (Figure 5 is an example intended to clarify

the above construction. In this example the heavy-line arcs constitute

the set S.)

(d) Lower and upper arc bounds denoted byb(u) and c(u) for ucU

are defined as follows:

b(u)b(u) andc(u) = c(u) if ucU-S.*

b(u) = 0 and c(u) = c(u) - b(u) if ueS.

b(u") = 0 and c(u') = b(u) for u" c U*.

*U-S denotes the arcs of U that are not in S, i.e., those uc U such
that b(u) < 0.
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b(u °) = 0 andc(u °) = b(u) for u*° e U°° .

b ) =b w) = 0

c(w) =c(w) K1 .

Here K1 is any integer known to exceed the value of every feasible xI -x

flow pattern in (X, U).

(e) Unit costs denoted by al(u) and a2 (u) are defined as follows:

al(u) al(u) and a2 (u) = a2 (u) for ucU.

a 1 (u) a2 (u)= 0 for u c U.

al(u°) =a 2 (u°9 ) = 0 for u°° C U°° .

al(w°) =a(w° ) = K2 .

a2 (w) a2 (w°O) = 0.

Here K2 is an integer that exceeds Zumax{a,(u), a2 (u)). (The reasons

for specifying K1 and K2 in this manner will be clarified later.)

If x and xn are designated as source and sink in the augmented

network then (X,U) together with functions b, c, a1, anda 2 define a Type

A network. Whenever feasible or ideal flow patterns in (X,"U) are men-

tioned these are intended to be xI -- xn patterns that are feasible or ideal

relative to b, c, a1 , and a2 . Patterns in (X, U) are always related to b,

c, al, and a2 . Flow patterns in (X,J) will be denoted by symbols such

as f and g to further distinguish them from flows in (X, U).

Let fbe a feasible flow pattern in (X,U) which saturates U° and U00,

i.e., one such that ( u =(u ° ) for all u ° c U' and f(u ° ) c(u)

for all u .° e U". Such patterns, and only such, are called transformable

flow patterns in (X, U). It will be shown that transformable flow patterns

60



in (X, U) correspond to feasible patterns in (X, U) and that ideal

transformable patterns in (X,U) correspond to ideal patterns in (X, U).

Let f be an arbitrary transformable flow pattern in (X,U). A

transformation cj will now be introduced that maps f into a flow pattern f

in (X, U). Specifically, for every uc U define f(u) as follows:

{ f(u) if uc U-S

f(u) lf(u) + b(u) if ucS

The pattern f related to f in this way will be denoted sometimes by Of.

Note that if f and f-2 are different transformable flow patterns in (X, U)

then O and 2 will be different functions on U. For if f, and f2 coincide

on U they will coincide also on U° , U°° , w', and w °° . (All transformable

flow patterns have the same values on arcs of U° and U°° , so that it is

only necessary to consider w* and w". But f and f2 must be such that

input equals output at x1 and xn . Since the values of arc flow are the same

for all arcs incident with xi, except possibly w*, they must agree also on

w'. A similar consideration applies for w*° . ) Thus if fT and T2 are

distinct they must differ on an arc of U, so that fi = fi f will not coincide

with f2 = -2 Expressed differently, 40 is a one-to-one mapping of the

set of transformable x, -x n flow patterns in (X, U) onto a certain set of

flow patterns in (X, U). This latter set is in fact the set of all feasible

XI -x n flow patterns In (X, U), as will be seen presently.

Lemma 16

if is a transformable X, "Wxn flow pattern of value k in (X,U) then

f f is a feasible x, -xn flow pattern of value k - Esb(u) in (X, U).
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Proof. Note first that each arc flow is feasible. For if u E U-S,

f(u) = f(u), b(u) =b(u) and c(u) = c(u), so that the feasibility of f(u)

follows from that of f(u). If ueS then f(u) =f(u) + b(u), b(u) = 0, and

c(u) = c(u) - b(u). Sincef'is feasible 0<f(u)<c(u). Consequently

b(u) < f(u) < c(u), so f(u) is feasible.

It will be shown next that if xcX and x is neither x1 nor x the net

output at x is zero. The summation Z U(.x ) f(u) can be written as

Z1 f(u) + 2;2 f(u) where Z1 ranges over arcs of U n'U(- x)* and Z2

ranges over U°n U(-x). For every ucS CI(-x), 21 contains a term

f(u), and 2 contains a term c(u) b(u) which together equal

f(u) + b(u) = f(u). For everyuc (U-S) nu(-x), z1 contains a term

f (u), and Z2 has no corresponding term, since b(u) < 0 for arcs of U-S

and no corresponding arc u° exists. Also, f(u) = f(u) in this case. It

follows that Z f(u) = Z- f(u) since each term of the first sum-U(-s) U(-x)
mation can be paired with one or two terms of the second summation,

depending on whether uc (U-S) or whether ucS. A very similar argu-

ment shows that Z U(x-) f( u) = T(x -- )f(u). Since the net output off

at x is zero it follows that the net output off at x is zero. Thus f is either

a feasible x1 -x n flow pattern or a feasible xn -x 1 flow pattern in (X, U).

It will next be shown that the former possibility is always true. (The

latter will also be true whenever the value of f is zero. )

Consider now vertex x=x1 . One can write EU(..x)f(u) = 1:f'(u)+ 1.2(u) +

f'(w*) where Z 1 and Z2 have the same meanings as before. By matching

SAnB denotes the set of elements common to sets A and B.
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all terms of E1 and 1 2 with terms of ZU(.x) f(u), only the arc flow f(w)

has no counterpart in f. So 2 U(.x) f(u) = Ij(..x)f(u) -T(w ° ). As

before ZU(x-) f(u)= D(x...,)f(u). Since net output of Tfat x1 is zero

it follows that the net output of f at x1 is f(w ° ). So f is a feasible x1 -- x n

flow pattern of value f(w ° ) in (X, U). Now the value of f'is k = ZUG f(u) +

f(w ° ) and ;uof(u) = 2sb(u). Hence the value of f is k - Zsb(u) as

asserted. This completes the proof.

It was noted above that no flow pattern in (X, U) is the transform of

more than one transformable flow pattern in (X,U). On the other hand

it can readily be shown that an arbitrary feasible x1 --Oxn flow pattern f in

(X, U) is the transform of some transformable flow pattern in (X,U). To

show this, define a transformation * as follows: f = f, where T is the

flow pattern in (X,U) defined by:

f(u) =f(u) ifucU-S.

f'(u) = f(u) - b(u) if uCS.

f(u ° ) = b(u) ifucU.

f(u ° ° ) = b(u) if u°° c U°° .

f(w ° ) = f(w°° ) =k, where k is the value of f.

It is clear that fis a feasible x1 -Xn flow pattern in (X,U). (The fact

that net output is zero for all xc X is established by introducing 21 and Z2

as before and applying essentially the same argument as before. ) The

value off is k+ Zsb(u) where k is the value of f.

The transformation * is the inverse of P, satisfying #(0 f) = V= f

and O4(4) =f= f. So *will be denoted by - 1 . Summarizing the above

observations gives Theorem 17.
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Theorem 17

4 is a one-to-one mapping of the set of all transformable x, -&Xn flow

patterns in (X,U) onto the set of all feasible xl-xn flow patterns in (X, U).

If f is transformable and has value k then 4f has value k - 2;sb(u ) . The

transformation * defined above is the inverse mapping of all feasible

x, -- x n flows onto all transformable x -x n flows.

The costs as well as the values of a transformable x1 ,-x flow pattern

" and its image f = 4f are connected by a simple relation. The following

result establishes this relation.

Theorem 18

If f = Of then

T(f) = T(f) - 2a1 (w )f (w) + M Sa 1 (u)b(u)'.

Since f(w ° ) was seen earlier to be the value of f, and ZSa l (u)b(u) is a

constant, this means that T(f) differs from T(f) by an additive constant

and a term proportional to the value of f.

Proof. For ucU-S, f(u) = f(u) and ai(u) = ai(u) for i = 1 and 2, so

the costs of f and fare the same on U-S. For ueS the cost of f is

E Sa 1(u)f(u) and that of f isZ Sal(u) [ f(u) - b(u)1, so that the cost of f

exceeds that offby ISal(u)b(u) on S. Since f is only defined on arcs of

S and U-S the total cost of f is accounted for above. Since al(u) = a2 (u) = 0

for uc U" or uc U'* the only additional cost of is associated with arc flows

f(w ° ) and f(w" ). But since f'(w) = f(w ) > 0 for transformable flows,

and a 1 (we) al(woo ) by definition, the total cost in w° and w. ° is

2al(w )f(w ° ). The formula given in the statement of this theorem is

simply a consolidation of the above relations.
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As a corollary to the preceding theorem it may be noted that if f is a

- -1feasible x1 -x n flow pattern of value k, and f = 4)lf, then

T(f) = T(f) - 2kal(w) + I;Sa 1(u)b(u)

so that the costs of f and f differ by a constant if the value of f is fixed.

Therefore to find a minimum-cost (i.e., ideal) x1 -x n flow pattern of

value k it suffices to find a minimum-cost transformable x 1 -X n flow

pattern f-such that the value of Of is k. Since the value of f exceeds that

of f = Zfby sb(u) it suffices to find a transformable f whose value is

k + Zs b(u) and such that no other transformable flow having this value

has smaller cost.

Nearly all the information required for a general solution to Problem B

is now at hand. The remaining gap to be filled is to show that every non-

transformable x-x flow pattern of a given value costs more than a

minimum-cost transformable xl" n flow pattern, provided that any trans-

formable patterns having this value exist. For otherwise, if one simply

computes ideal xl--xn flows for all feasible values, these flows may not

be transformable and hence will not yield corresponding ideal x1 - xn

flows. The next result removes this danger. In the course of doing so,

the reason for associating a large unit cost (viz., K2 ) with wo and w"

will be clarified.

Lemma 19

If any transformable Xl - flow patterns of value k exist then every

ideal pattern of value k is transformable.
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Proof. Assume that f and f2 are feasible Xl--ox n flow patterns having

the same value k, and that f1 is transformable whereas f 2 is not. It will

be shown that f2 cannot be ideal. Consider the zero-valued flow pattern

f 1- fT By Lemma lit is possible to write f1- f2 = g1 + 2 + + gn

where the gi's are appropriate conformal elementary cycle flows. Since

f 2 is not transformable U° and U60 are not both saturated by f2 , whereas

f does saturate both U° and U °° . Suppose f 2 fails to sa'urate U° . Then

f - f2 involves positive flow in one or more arcs u° U', zero flow in the

remaining arcs of U° , and negative flow (i.e., flow toward x1 ) in w ° . At

least one of the elementary cycle flows, say gi, must be such that gi(u) =1

for some u ° cU ° and gi(w) -1, since the sum of all of the cycles ac-

counts for all flow of f 2- f2" From Lemma 2 it follows thatf 2 + g is a

feasible flow pattern whose value is k. It will now be shown that

T(f 2 + gi) < T(f'2 ), so that f2 cannot be ideal. Now e(gi;f 2 ) is the sum of

terms each of which is either plus or minus the unit cost of an arc of the

elementary cycle associated with gi. In particular one of the terms is

-K 2 where K 2 was the unit cost of we, i.e., al(w° ). If the cycle also

contains arc w ° ° , gi(w ° ° ) = -1 for the same reasoning as that applied to

w' . So e(gi;2 ) = -K2 + Q or -2K 2 + Q where Q is the sum of the effective

lengths of arcs of U involved in the cycle. (The cycle also contains an arc

of type u ° and possibly one of type u° ° , but since these have zero unit costs

their effective lengths are zero and can be disregarded. ) But it is clear

that K2 > Q since K2 was taken to be an integer greater than

U max {a 1 (u), a 2 (u )) and hence is surely greater than the sum of the

effective lengths relative to f 2 of selected arcs of U. It follows that
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e(gi;f2 ) < 0 so that T(f 2 + gi) < T(f2) by Lemma 6. Hence f 2 is not ideal.

(If U" were saturated by f2 but U*" were not, the proof would be essentially

the same. )

All the necessary facts that lead up to the following theorem, whose

validity forms the basis for a general procedure for solving Problem B,

have now been established.

Theorem 20

Let M denote the x---x n capacity of (X, U). Either there are no

transformable x 1-x nflow patterns, or else there is an integer m, where

0 < m < M, such that there are no transformable xl--Xn flow patterns of

value p for 0 < p < m, and every ideal pattern of value q, where M < q<M,

is transformable.

Proof. Suppose there exists a transformable x 1 --Oxn flow pattern of

value i, where i <M. It follows from Lemma 19 that any ideal xl--xn

flow pattern of value i is necessarily transformable. Let f. be such a

pattern. Since f. is ideal but not maximal it follows from Lemma 5 that1

an ideal flow pattern f i+ of value i+ 1 can be obtained by adding an appro-

priate elementary path flow to fi. But since every arc of type u* and u**

is already saturated the first and last arcs of an unsaturated elementary

path are necessarily w" and w". Hence fi+ 1 must be such that the flow

in arcs w" and w°° is increased by one, and arcs of types u' and u*° are

still saturated. Thus fi~ is also transformable. If f i+ is not maximal

the argument may be repeated, so that ultimately ideal flow patterns of

values 1, 1+ 1, . .. , M, which are all transformable, can be generated.
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From Lemma 19 it follows that no feasible but nontransformable flow

patterns of values i, i+ 1, . . ., M can be ideal. The proof is complete

if m is taken as the smallest integer i such that a transformable flow

pattern of value i exists.

Corollary

Since there is a feasible xl-X n flow pattern of value k in (X, U) if

and only if there is a transformable xl-ox n flow pattern of value

k + E b(u) in (X, U),it follows that there are feasible X-1 -xn flow patterns

of value k for m < k < M, where m = m - 2sb(u) and M M - b(u),

and for no other values.

PROCEDURE FOR SOLVING PROBLEM B

Every Type B problem can be solved by the following method:

(a) Given a Type B network (X, U); construct the associated Type A

network (X,U).

(b) Solve the Type A problem for this network, obtaining a sequence

{fl, f 2 ,... where each I f. is an ideal Xl-mXn flow pattern of value i

in (X,U) andM is the Xl-Xn capacity of (X,U).

(c) If none of the f. s are transformable there are no feasible flows in

(X, U).

(d) If at least one f. is transformable then for some m it will be true

that{T, . . ., T- _ are nontransformable andJ- ,..., Tg are

transformable. It can then be asserted that m = m - Zsb(u) and

M M - s b(u) are the smallest and largest values for which feasible
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XlWX n flow patterns in (X, U) exist. Moreover fi =  1fi + Zsb(u) is an

ideal flow pattern of value i for i = m, m+1, . . ., M.

This procedure, incorporating in step b the algorithm of the previous

section, or any other known technique for solving Problem A, constitutes

the complete solution to Problem B.
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SOLUTION OF PROBLEM C

Let (X, U) be a weighted, capacitated network, and let f be a feasible

X-x n flow pattern in (X, U). Suppose that one wishes to determine

whether or not f is ideal. If the network is a Type A network, a theoret-

ical criterion has already been given: f is ideal if and only if e(C;f) > 0

for every elementary cycle C in (X, W) where W denotes U U U' as usual.

Suppose f is not ideal. Since it has been established that

T(f+ gc) = T(f) + e(C;f)

where g. is the elementary cycle flow associated with C, f, = f + gc is a

feasible flow pattern having the same value as f but reduced cost, if

e(C;f) < 0. The reasoning can be repeated, using f1 in place of f. Either

e(C;f 1 )>0 for all C or else one can find C such that f2  f1 + gc has still

smaller total cost. Proceeding in this fashion an f is ultimately obtainedP

such that e(C;f p) > 0 for all C. Then fp must be ideal. An algorithm that

locates a'simple cycle C such that e(C;f) < 0 whenever such a cycle exists

is described in this section. This algorithm is essentially the same as

Algorithm 1, which was used earlier to solve Problem A.
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Although Problem C is posed for networks of Type B as well as for

those of Type A it is sufficient to produce a general solution for Type A

networks. For if (X, U) is a Type B network let (X, U) denote the asso-

ciated Type A network defined in the previous section. Using the notation

of that section, if f is a feasible Xl-Xn flow pattern in (X, U) then T= f
innis a transformable x1 --Wx n flow pattern in (X, U). Moreover f is ideal in

(X, U) if and only if f is ideal in (X, U). Hence f can be tested to determine

whether or not it is ideal. If it is not, suppose that it is changed into an

ideal transformable pattern f1 having the same value. Then f, = Of is an

ideal pattern in (X, U), having the same value as f. Hence Problem C in

a Type B network can always be Solved by solving a related problem in the

associated Type A network.

For Type A networks, the key to solving Problem C is the following:

Theorem 21

If Algorithm 1 is applied to a feasible, nonideal Xl-x n flow pattern f

and if every vertex eventually has a finite label then the algorithm will

continue to relabel vertices after n iterations. If y is relabeled during

the mth iteration, where m > n, and if the procedure is interrupted

immediately after this relabeling, then the approach set A(y) will contain

a cycle.

Proof. The second part of the theorem will be proved first. Suppose
th

that y is relabeled on the m iteration, where m > n, and the algorithm is

then halted. If A(y) were a simple x1 -y path P at this time it would follow

from Lemma 14 that V(y) 2 e(P;f). But P can have at most (n - 1) arcs,

71



and hence it follows from Lemma 10 that V(y) < e(P;f) before the mth

iteration started, which contradicts the fact that it was relabeled on the
th

m iteration. Hence A(y) cannot be a simple x 1 -Oy path. It was seen

earlier that if A(y) was not a path then it contained a cycle. So the second

half of the theorem has been established.

It remains to show that some vertices will in fact be relabeled on

iterations after the nth. Since f is not ideal there is a simple cycle C

such that e(C;f) < 0. This follows from Lemma 8. Suppose this cycle is

{wi, w2, . . ., wk), where w 1  (yl,y 2), w2  - (y 2 ,y 3 ).

Wk ! (Yk' Yl ) " Consider any time during the algorithm at which all

vertices of the set {yi, Y2 # . .", Yk) have finite labels. It has been

assumed that from some point in time onward this will be the case.

Suppose that at such a time the algorithm is halted. The following

inequalities cannot all be true:

V(y 2 ) <V(y1 ) + e(wl;f)

V(y 3 ) <V(y2 ) + e(w 2 ;f)

V(yk)< V(yk 1 ) + e(wk-l;f)

V(yl)_< V(yk) + e(wk;f)

for this would imply that 0 < e(C;f). So at least one label can be

improved. But this will always be the case, since the algorithm was

halted at an arbitrary time after all vertices of the set {Iy, Y2 9 " . "' Yk)

attained finite labels. So the algorithm will never arrive at a "stable"
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set of labels such that V(y) > V(x) + e(w) for every wE W where w - (x,y).

This completes the proof.

Let f be a feasible X.-X n flow pattern in a Type A network (X, U),

with U' and W defined as usual. A new network (X, U) will now be intro-

duced by adding additional arcs to U. Specifically, for every xi * x1 an arc

vi is created, with v. - (xlx.). Flow bounds and costs are assigned as

follows:

b(vi) = 0

c(v i ) = 1

al(v.) = K

a 2 (vi) = 0

Here K is chosen to be an integer larger than .u max t a,(u), a 2 (u)].

Thus K is larger than the effective cost (relative to f) of any simple path

joining two vertices by means of arcs of W, provided that none of the

arcs is saturated.

If Udenotes U augmented by v 2 , v., . .. , vn) and if b(vi), c(vi),

*1 ( vi ), and a 2 (v i ) are defined in the above manner then (X, U) is again

a Type A network. Moreover if we extend the definition of f by setting

f(u) = 0 for u = v i and i = 2, 3, . .. , n then the extended function f is a

feasible X1 -. Xn flow pattern in (X, U). Ideal patterns in (X, U) and (X, U)

are related by the following result:

Lemma 22

If f is a feasible xl-Oxn flow pattern in a Type A network (X, U) and if

(X, U) and f are defined in the indicated manner then f is ideal in (X, U)

if and only if f is ideal in (X, U).
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Proof. Suppose that f is a feasible flow pattern in (X, U). Let g be

another feasible flow pattern in (X, U), having the same value as f, and

let f and g be these patterns extended to (X, U) by setting f(vi) = g(v i ) = 0

for i = 2, 3, . .. , n. The cost of f relative to (X, U) is the same as that

of f relative to (X,U) since f(u) = 0 for uc (U - U). Similarly for g and

g. So if f is ideal in (X,U) then f is ideal in (X, U). For otherwise there

would be a g in (X;U) with cost smaller than f, and hence gwith cost

smaller than f, which cannot be if f is ideal.

It remains to show that if f is ideal in (X, U) then f is ideal in (X, U).

The argument here is slightly more involved, since one must consider all

feasible flows of a given value in (X, U), not merely those such that

f(v2 ) = f(v 3 ) = . . = f(vn ) = 0

in order to determine an ideal flow. Suppose that f is ideal in (X, U), but

thatf is not ideal in (X,U). Let h be ideal in (X, U) and have the same

value as f. Note first that h must be such that h(v) = 1 for some

i = 2, 3, . .. , n. For ifh is the extension g of some pattern g in (X, U),

since g and g have the same total cost, it may be concluded that g is

"cheaper" than f, since f and f have the same cost and g is cheaper than

f. But this contradicts the assumption that f is ideal. Hence if f is ideal

but f is not, then an ideal pattern h in (X, U) must be such that h(vi) = 1

for some vi. For convenience assume that h(v 2 ) 1. Now f and h are

feasible patterns of the same value in (X, U). The zero-valued pattern

f- h can be decomposed into conformal simple cycle flows g1 , g2, " ", gp

One of these, say gi, is such that gi(v 2 ) = -1 since f(v 2 ) = 0 and h(v 2 )=1.
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From Lemma 2 it is known that h + gi is feasible. Hence e(Ci;h) < -,

from Lemma 6, where Ci is the simple cycle in Wcorresponding to g.

The cycle C. consists of some arcs of form u c U and ut c U' and of the1

arc v' . For each arc of form u or u' the effective cost relative to h is

clearly at most max { a,(u), a2 (u)). For v1 on the other hand

e(v2;h) = -K where K is the unit cost a1 (v 2 ). But K > Lumax {a 1 (u),

a 2(u)), and hence clearly e(Ci;h) < 0. This contradicts the fact that h is
2 ow

ideal. So if f is ideal in (X, U), f is ideal in (X, U). This completes the

proof.

Note that if f is a feasible x1 -- x n flow pattern in a Type A network

(X, U) and if (X, U) and f are defined in this way then f is feasible and

nonmaximal in (X, U). The latter property follows from the fact that we

could augment f by a unit flow in arc v11 5 (xl, xn) and thus increase the

value of flow by one. Moreover f has the property that, after one iteration

of Algorithm 1, every vertex of (X, U) will have a finite label. This

follows from the fact that e(v ;f) = K <.for i =2, 3, n, and that

v. directly connects x1 and x. Hence f meets the requirements for

satisfying either Theorem 15 or 21, depending on whether or not it is

ideal. These two theorems together with Lemma 12 justify the following

general procedure:

PROCEDURE FOR SOLVING PROBLEM C IN TYPE A NETWORKS

(a) Given a feasible xl---x n flow pattern in (X, U) define (X, U) and

f in the manner indicated earlier.
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(b) Apply Algorithm 1 to fin (X,U) and proceed until one of the

following occurs:

(i) The algorithm terminates, with V(y) <V(x) + e(w; f) for

all w e W where w 2! (x, y).

(ii) Vertex x1 is relabeled, so that V(xl) < 0.

(iii) (n + 1) complete iterations have been accomplished.

(c) If case (i) occurs f is ideal; hence (Lemma 22) f is ideal. If

case (ii) occurs A(xl) contains a cycle C such that e(C; f) < 0. Replace

f by the less costly flow f + gc where gc is the elementary flow pattern

corresponding to C. If case (iii) occurs, and y is a vertex relabeled

stduring the (n+ 1) iteration, then A(y) contains a cycle C with e(C;f) <0.

Replace f by f+ gc" In either of the last two cases repeat step b with

f + gc in place of f. Continue this process until a point is reached such

that the outcome of step b is b( i). When this occurs an ideal pattern in

(X, U) has been found, and also a corresponding ideal pattern in (X, U).

The reason for distinguishing cases (ii) and (iii) in step b of the

procedure is simply to shorten the computations whenever V(x I ) <c0

before n+ 1 iteratiens have been completed. The procedure can be further

shortened by a device essentially the same as that employed in Lemma 7.

Once a cycle C has been found such that e(C; f) < 0, evaluate Qw for all

we C as in Lemma 7. Let Q = minQw. Thenf+ Q g. will be a feasible

pattern whose cost is -Q • e(C; f) less than that off. This can be estab-

lished rigorously by a line of reasoning very similar to that employed in

the proof of Lemma 7. (The main point in the reasoning is that Qw is the

largest integer such that one can add up to Qw units of flow to f(w) before

the effective cost of w changes. )
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GLOSSARY OF PRINCIPAL SYMBOLS

Symbol Brief Explanation Page,

x, y, z Individual vertices 7

X Set of vertices 7

u, v, w Individual arcs 7

U Set of arcs 7

u;; (x, y) "u is directed from x to y" 7

P, C Path (cycle) 8

u' "Reverse" of arc u 9
U' Set of all u' for u e U 9

W UUU' 9

f, g, h Flow patterns 11

f(u), g(u), h(u) Arc flows 11

U(x-), U(-.x) Set of arcs "leaving" C' entering") x 11

flf(x) Net output at x relative to f 12

f+g, f-g Arc-by-arc sum (difference) of f and g 14

9P, 9c Elementary path (cycle) flow 15

b(u), c(u) Lower (upper) bounds on flow 18

a,(u), a2 (u) Unit cost in direction of u (u') 20

T[ f(u)I Cost of f in u 20

T(f) Total cost of f: Z T[ f(u) ] 20

e(u;f) Effective cost of arc relative to f 39

e(P;f), e(C;f) Effective cost of path (cycle) relative to f 40

V(x) " Label" of x 47

A(x) Set of approach arcs associated with x 50

A Set of all approach arcs 50

(X,U) Augmented network for Problem B 58

(X, U) Augmented network for Problem C 73
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INDEX

Approach value of 14
arc 47
set 50 Graph

connected 11Arc 7 directed 7
adjacency 8 finite 7
approach 47 geometric 8
end-points of 8
parallelism 8 Incidence 8
strict adjacency 8
strict parallelism 8 Lower bound on flow 18

Cost Net output 12
effective 39
of arc flow 20 Network 11
of flow pattern 20 capacitated 18
unit 20 capacity of 24

type A 23Cycle 9 type B 24
effective cost of 40 weighted 20
flow 15
saturated 35 Path 8
simple 9 effective cost of 40

flow 15Flow 11 simple 9
arc 11 saturated 35
characteristic 39 x-.y 8
elementary cycle 15
elementary path 15 Sink 12
feasible arc 18

Source 12Flow patterns 11
conformal 14 Upper bound on flow 18
cost of 20
difference of 14 Vertex 7
elementary 15 initial 7
feasible 18 intermediate 12
ideal 20 isolated 8sum of 14 net output at 12
transformable 60 terminal 7
x.y 14
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